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Abstract. The interlayer magnetoresistance of a quasi-one-dimensional Fermi liquid is
considered for the case of a magnetic field that is rotated within the plane perpendicular to the
most-conducting direction. Within semi-classical transport theory, dips in the magnetoresistance
occur at integer ‘magic angles’ only when the electronic dispersion parallel to chains is non-linear.
If the field direction is fixed at one of the magic angles and the temperature is varied, then the
resulting variation of the scattering rate can lead to a non-monotonic variation of the interlayer
magnetoresistance with temperature. Although the model considered here gives a good description
of some of the properties of the Bechgaard salts, (TMTSF)2PF6 for pressures less than 8 kbar and
(TMTSF)2ClO4, it gives a poor description of their properties when the field is parallel to the layers
and of the intralayer transport.

1. Introduction

In spite of intensive research over the past decade, the nature of the metallic state in low-
dimensional strongly correlated materials is still poorly understood. Widely studied materials
include cuprate and organic superconductors [1, 2]. Many of the properties of the cuprates
cannot be understood within the Fermi-liquid picture that has so successfully described
conventional metals [3]. Although some properties of the quasi-two-dimensional molecular
crystals κ-(BEDT-TTF)2X [4] and the quasi-one-dimensional Bechgaard salts [5] (TMTSF)2X
can be explained within a Fermi-liquid framework, others cannot. A particular challenge
is understanding the dependence of the magnetoresistance of the Bechgaard salts on the
direction of the magnetic field, especially (TMTSF)2PF6 under pressures of about 10 kbar [6,7].
The different angle-dependent magnetoresistance effects in quasi-one-dimensional metals are
known as the Danner [8], magic angle (or Lebed) [9–14], and third-angular effects [15],
depending on whether the magnetic field is rotated in the a–c, b–c, or a–b plane, respectively.
(The most- and least-conducting directions are those of the a- and c-axes, respectively.) The
magic angle effect is the most poorly understood of these effects and is the focus of this paper.
If θ is the angle between the magnetic field and the c-axis, then at the ‘magic angles’ given by

tan θ = b

c

p

q
± p, q = 1, 2, 3, . . . (1)

where b and c are the lattice constants in the b- and c-directions, Lebed predicted dips in the
threshold field for formation of a field-induced spin-density wave [9]. Although these dips
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are not observed [10], features are seen, mostly at p/q = 1, 2 in the torque [12] and in all
components of the resistance [7, 12–14, 16–18].

A wide range of physical mechanisms have been proposed to explain these effects including
commensurability effects changing the electron–electron scattering rate [11], semi-classical
transport [19], complicated band structures [20, 21], hot spots on the Fermi surface [22],
cold spots on the Fermi surface [23], electron–electron interactions [24], non-Fermi-liquid
effects [25], and changes in effective dimensionality induced by magnetic fields [26].

The properties of (TMTSF)2PF6 at 10 kbar are particularly difficult to understand. For
example, when the magnetic field is perpendicular to the current direction, the magneto-
resistance is smaller than when it is parallel, the opposite of what one observes for
(TMTSF)2ClO4 and for conventional metals. Recently, the temperature dependence of the
magnetoresistance when the field direction was fixed at the first magic angle was measured
[7]. It was found to be non-monotonic: as the temperature decreased down to Tmin, the
magnetoresistance decreased; it increased until Tmax was reached, and then decreased. It has
recently been proposed that these two temperatures actually represent phase transitions between
metallic and insulating phases [26]. The magnetoresistance of the quasi-two-dimensional metal
α-(BEDT-TTF)2MHg(SCN)4 (M = K, Rb, Tl) also exhibits unusual temperature and angular
dependence [27, 28].

The purpose of this paper is to clarify what properties of the magic angle effects can only be
explained within a non-Fermi-liquid framework by seeing what effects can be explained within
Fermi-liquid theory. The interlayer magnetoresistance is calculated within the framework of
semi-classical transport theory. It is found that if one takes into account the finite bandwidth
along the most-conducting direction, then dips in the magnetoresistance are observed for
p/q = 1, 2, 3, . . . [19]. Furthermore, if one assumes a simple Fermi-liquid form for the
temperature dependence of the scattering rate, then at the magic angles the interlayer magneto-
resistance does have a non-monotonic temperature dependence. Hence, one should be cautious
about associating maxima and minima in the temperature dependence with metal–insulator
transitions. However, the results obtained give a poor description of the observed properties
when the field is close to the b-axis and of the resistivity within the layers.

2. Calculation of the interlayer conductivity

2.1. Semi-classical transport theory

If the electronic dispersion relation is ε(�k) then the electronic group velocity perpendicular to
the layers is vz = (1/h̄) ∂ε(�k)/∂kz. The interlayer conductivity can be calculated by solving the
Boltzmann equation in the relaxation time approximation leading to Chambers’ formula [29]

σzz = e2τ

4π3

∫
vz(�k)v̄z(�k)

(
−∂f (ε)

∂ε

)
d3�k (2)

where f (ε) is the Fermi function and τ is the scattering time which is assumed to be the same
at all points on the Fermi surface. v̄z(�k) is the electron velocity averaged over its trajectories
on the Fermi surface:

v̄z(�k) = 1

τ

∫ 0

−∞
exp

(
t

τ

)
vz(�k(t)) dt (3)

where �k(0) = �k. The time dependence of the wave vector �k(t) is found by integrating the
semi-classical equation of motion

d�k
dt

= − e

h̄2
�∇kε × �B. (4)
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If the temperature is sufficiently low that T 	 EF , then ∂f/∂ε in equation (2) can be replaced
by a delta function at the Fermi energy and equation (2) becomes

σzz = e2τ

4π3

∫
vz(�k)v̄z(�k)δ(EF − ε(�k)) d3�k. (5)

2.2. Dispersion relation along the chains

In the tight-binding approximation the dispersion relation for an orthorhombic crystal can be
written as

ε(�k) = −2ta cos(kxa)− 2tb cos(kyb)− 2tc cos(kzc) (6)

where ta , tb, and ta are the intersite hopping integrals along the different crystal axes. For the
Bechgaard salts, ta 
 tb, tc, the dispersion along the chains can be linearized giving

ε(�k) = h̄vF (|kx | − kF )− 2tb cos(bky)− 2tc cos(bkz)

where vF = 2taa sin(akF )/h̄ is the Fermi velocity and kF is the Fermi wave vector. This linear
dispersion has been used in a number of papers on the magic angle effect [20–22, 24]. If one
solves for the interlayer conductivity within semi-classical transport theory, one obtains

σzz(θ)

σ 0
zz

= 1

1 + (ωc0τ sin θ)2
(7)

where ωc0 = evF cB/h̄ is the frequency at which an electron traverses the Brillouin zone in the
c-direction when the field is parallel to the b-axis. Clearly this is a smoothly varying function
of θ and does not exhibit any magic angle effects.

We now show that if the full non-linear dispersion (6) is used, then one does obtain magic
angle effects. We will re-derive a result obtained earlier by Maki [19] with a view to elucidating
the physics in the process.

2.3. Solution of the semi-classical equations of motion

The group velocity for the dispersion relation (6) is

�v(�k) = 1

h̄
�∇kε = 1

h̄




2ata sin(akx)

2btb sin(bky)

2ctc sin(ckz)


 . (8)

The rate of change of the wave vector �k(t), in a magnetic field in the b–c plane, �B =
(0, B sin θ, B cos θ), is given by (4)

d�k
dt

= 1

h̄2




−2beBtb cos θ sin(bky)

2aeBta cos θ sin(akx)

−2aeBta sin θ sin(akx)


 (9)

where terms involving tc have been neglected. This is valid provided that tc sin θ 	 tb cos θ .
Hence, the results below will not be valid as θ → 90◦.

In order to calculate the z-component of the velocity, one needs to obtain �kz(t), which the
bottom line of equation (9) shows is determined by kx(t). To zeroth order in tb, kx(t) = kF .
Integrating the middle line of equation (9) then gives

ky(t) = ky(0) +
ωb

b
t (10)

where

ωb = vF eBb cos θ/h̄ ≡ ωb0 cos θ (11)
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is the frequency at which an the electron traverses the Brillouin zone in the direction of the
b-axis.

Substituting this into the top line of equation (9) and integrating gives, to first order in
tb/ta ,

kx(t) = kF +
2tb
h̄vF

cos(bky(0) + ωbt). (12)

We obtain kz(t) by using the bottom line of equation (9) and substituting in (12), giving
dkz
dt

= −2aeBta sin θ

h̄2

[
sin(kF ) cos

(
2atb
h̄vF

cos(bky(0) + ωbt)

)

+ cos(akF ) sin

(
2atb
h̄vF

cos(bky(0) + ωbt)

)]
(13)

where we have used trigonometric identities to expand sin(akx(t)). If we take a linear
dispersion relation, the second term in (13) will equal zero and we are left with dkz/dt =
−BevF sin θ/h̄, where we have assumed that at t = 0, the wave vector in the x-direction (kx)
is equal to kF .

Now to first order in tb/ta ,
dkz
dt

= −2aeBta sin θ

h̄2

[
sin(akF ) + cos(akF ) sin

(
2atb
h̄vF

cos(bky(0) + ωbt)

)]
. (14)

Integrating this we obtain

kz(t)c = kz(0)c − ωct − γ0 tan θ sin(bky(0) + ωbt) (15)

where

ωc = ωc0 sin θ (16)

and

γ0 = 2ctb
h̄vF

a

b
cot(akF ). (17)

2.4. Evaluation of the interlayer conductivity

Substitution of (15) into the z-component of the velocity gives

vz(kz(0), φ, φ
′) = 2ctc

h̄
sin

(
ckz(0) +

ωc

ωb
φ′ − γ0 tan θ sin(φ − φ′)

)
(18)

where φ′ = −ωbt , φ = bky(0).
The interlayer conductivity given by (5) can then be written in the form

σzz = e2

4π3bh̄vF

∫ π/c

−π/c
dkz(0)

∫ 2π

0
dφ vz(kz(0), φ)

∫ ∞

0

dφ′

ωb
exp

(
φ′

τωb

)
vz(kz(0), φ, φ

′).

(19)

We now expand equation (18) using trigonometric identities and substitute the Bessel
generating functions to obtain

vz(kz(0), φ, φ
′) = 2ctc

h̄

[
sin

(
ckz(0) +

ωc

ωb
φ′

)

×
[
J0(γ0 tan θ) + 2

∞∑
k=1

J2k(γ0 tan θ) cos((2k)(φ − φ′))
]

+ cos

(
ckz(0) +

ωC

ωb
φ′

)[
2

∞∑
k=0

J2k+1(γ0 tan θ) sin((2k + 1)(φ − φ′))
]]

(20)
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and vz(kz(0), φ) is obtained by settingφ′ = 0. Substituting these expressions into equation (19)
and performing the integrals over φ′, φ, and dkz(0), the final expression for the conductivity
becomes

σzz(θ) = σ 0
zz

[
J0(γ0 tan θ)2

1 + (ωcτ )2
+

∞∑
ν=1

Jν(γ0 tan θ)2
(

1

1 + τ 2(ωc − ωbν)2
+

1

1 + τ 2(ωc + ωbν)2

)]

(21)

where

σ 0
zz = 2e2τct2c

πbh̄3vF

is the interlayer conductivity in zero field. Note that for fixed ν and z 	 1,

Jν(z) ≈ (z/2)ν

*(ν + 1)
. (22)

Maki [19] obtained a similar result, although he included the corrections to ωb and ωc to the
next order in (tb/ta)2. This raises the general question of to what order in tb/ta the above
expression for σzz is valid. We only calculated kz(t) to first order in tb/ta . Strictly speaking,
this means that (21) is valid to second order in tb/ta . However, we anticipate that a general
solution for vz(t) will be of the form

vz(t) ∼ sin(ωct)
∑
n

an sin(ωbt)

where an is of order (tb/ta)n. This means that the coefficients in (21) for ν � 2 will change
but be of the same order.

3. Magic angles

The angular dependence of the interlayer resistivity given by equation (21) is shown in figure 1
for several parameter values. Dips occur at the ‘magic angles’ given by ωc = νωb or

tan θ = b

c
ν ± ν = 1, 2, 3, . . . (23)

where b and c are lattice constants. The size of the dip at the νth magic angle, compared to
the background magnetoresistance, will be of order(

γ0

2

b

c
ν

)2ν(
ωcτ

ν!

)2

. (24)

The size of the dips is determined by the parameter γ0, defined by (17), which is determined
by the geometry of the Fermi surface. Note that if γ0 → 0, equation (21) reduces to (7). This
is because the limit γ0 → 0 corresponds to taking a linear dispersion relation. If γ0 	 1, then
the dips will decrease in magnitude rapidly with increasing ν. For example, if γ0 ∼ 0.1, then
the ν = 1 feature will be five orders of magnitude smaller than the ν = 3 feature. Note that
when ν becomes sufficiently large, this will no longer be valid, because γ0 tan θ ∼ 1.

We now consider what is a realistic value for γ0 for the (TMTSF)2X materials. If we look
at the form of γ0 in equation (17), we note that the factor 2ctb/(h̄vF ) equals the parameter
γ which determines the periodicity of the Danner oscillations [8, 30]. For (TMTSF)2ClO4 it
was estimated to be 0.24. The lattice constants for (TMTSF)2PF6 are a = 7.3 Å, b = 7.7 Å,
and c = 13.5 Å, while for (TMTSF)2ClO4, b is twice as large due to anion ordering [2].
The cot(akF ) term depends on the band filling. At three-quarter filling, kF = 3π/(4a), and
cot(akF ) = 1. This gives a value for γ0(PF6) = 0.24 and γ0(ClO4) = 0.12. Note that for
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  /
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ω0τ=10, γ0=0.25

ω0τ=5, γ0=0.25

ω0τ=10
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ν=2ν=−2

ν=−1  γ0=0.5

Figure 1. The angular dependence of the interlayer magnetoresistance of a quasi-one-dimensional
Fermi liquid. θ is the angle between the magnetic field and the c-axis and the magnetic field is
rotated in the b–c plane. The dips in the resistivity occur at the magic angles defined by tan θ = ν

where ν = 1 and 2 (see equation (23)). The dips only occur when one takes into account the non-
linear dispersion parallel to the chains and their intensity depends on γ0, which is determined by
the geometry of the Fermi surface (equation (17)). τ is the scattering time and ω0 is the frequency
at which the electron traverses the Fermi surface when the field is perpendicular to the layers. The
lattice constants b and c are set equal and so ω0 = ωb0 = ωc0. The resistivity is normalized to ρ0

zz,
the interlayer resistivity at zero magnetic field.

half-filling, kF = π/(2a), and thus γ0 = 0 and there will be no magic angle effects unless we
solve the semi-classical equations to higher order in tb.

Figure 1 is qualitatively similar to experimental results for (TMTSF)2ClO4 at ambient
pressure [16] and at 6.0 kbar [17] and (TMTSF)2PF6 at 6.0 kbar (0.3 K and 4 T) [18]. A small
difference is that the experimental data show a small dip near 90◦, whereas the theoretical
curve shows no such dip. It is quite possible that the small dips can be explained within
semi-classical transport theory if one includes the effect of a finite tc in the solution of the
semi-classical transport equations. An analogous effect occurs when the field is rotated in
the a–c plane: for coherent interlayer transport with finite tc, a peak in the angle-dependent
magnetoresistance occurs when the field is parallel to the a-axis [31].

The angular dependence of the interlayer magnetoresistance of (TMTSF)2PF6 at pressures
of about 10 kbar is quite different from that shown in figure 1 At fields less than one tesla
the angular dependence is similar to that given by equation (7). However, above one tesla,
ρzz ∼ (B cos θ)1.3 and so a large dip is observed near 90◦, and at 90◦ the in-field resistance is
comparable to the zero-field resistance [7].

A number of theoretical papers [11,20–22] have predicted effects when tan θ = (b/c)p/q

where p/q is a fraction. In contrast, the model considered here only gives effects for q = 1.
A review of the experimental literature shows that the only reproducible fractional features
seen have been in (TMTSF)2ClO4 at p/q = 3/2 and 5/2 [12]. This can be explained within
the framework considered here. If (TMTSF)2ClO4 is slowly cooled, anion ordering occurs
and the lattice constant in the b-direction doubles, so in (23), b should be replaced by 2b.
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However, for a sample which is not completely anion ordered, it will produce features at
angles corresponding to half-integers for a fully anion-ordered sample.

4. Temperature dependence of the interlayer magnetoresistance at the magic angles

Suppose that the field direction is fixed at a magic angle and the temperature (and thus the
scattering time τ ) is varied.

4.1. The first magic angle (ν = 1)

Setting ωc = ωb and using the fact that γ 	 1 to take just the first term in the series, i.e. ν = 1,
the conductivity is

σzz(θ1) � Aτ

[
1

1 + (ωc0 sin θ1τ)2
+

(
γ0 tan θ1

2

)2]
(25)

where θ1 represents the first magic angle and σ 0
zz = Aτ , where A is the ratio of the zero-field

conductivity to τ . A plot of interlayer resistivity versus 1/
√
τ is shown in figure 2 for different

values of ω0. The interlayer resistivity is a non-monotonic function of τ . It will be seen below
that this leads to non-monotonic temperature dependence.

0 1 2 3
0

10

20

30

ρ zz
 / 

A

1
τ

ω0=0

ω0=5

ω0=10

γ0 = 0.25
tanθ = ν =1
b/c = 1

Figure 2. The non-monotonic dependence of the interlayer resistivity, at the ν = 1 magic angle,
on the scattering time τ . The curves shown are for γ0 = 0.25 and for various values of ω0, which
is proportional to the magnetic field. 1/

√
τ is used for the horizontal axis because it will be an

increasing function of temperature in a Fermi liquid. A local minimum occurs at ω0τ � 1/sin θ1
and there is a local maximum when ω0τ � 2/(γ0 sin θ1). The interlayer resistivity ρzz is normal-
ized to 1/A, where A is a constant equal to the ratio of the zero-field conductivity to the scattering
time τ .

We now find for what values of τ the maxima and minima seen in figure 2 occur. Finding
the extrema of equation (25) as a function of τ gives that a minimum occurs when

ωc0τ � 1

sin θ1
(26)
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and a maximum occurs when

ωc0τ � 2

γ0 sin θ1
. (27)

If γ0 	 1, then the maximum will only be observed at sufficiently high fields and in high-purity
samples.

4.2. The second magic angle (ν = 2)

To obtain the interlayer conductivity for the second magic angle, a similar argument to that
given above leads to

σzz(θ2) � Aτ

[
1

1 + (τωc)2
+

(
γ0 tan θ2

2

)2( 1

1 + (τωc/2)2
+

1

1 + (3τωc/2)2

)
+
(γ0 tan θ2)

4

64

]

(28)

where we have set ωc = 2ωb and θ2 is the ν = 2 magic angle. For small γ0, the minima are
again given by ωcτ � 1. To find the maxima we expand the first two terms in (28) to fourth
order in 1/(τωc)2. A maximum occurs when

ωc0τ � 4

sin θ2(γ0 tan θ2)2
. (29)

Since this is smaller than (27) by a factor of 1/γ0, in order to see such a maximum, even higher
fields and lower temperatures will be required than for a maximum associated with the first
magic angle.

4.3. Conductivity as θ → 90◦

We can expand the term(
1

1 + τ 2(ωc − ωbν)2
+

1

1 + τ 2(ωc + ωbν)2

)

in the summation in (21) to second order in ν cos θ to obtain

2

1 + a2
(1 + ν2 cos θ2A + · · ·) (30)

where a = ω0τ and

A = a2(3a2 − 1)

(1 + a2)2
≈ 3

for ω0τ 
 1. Substitution of this into the conductivity gives

σzz(θ → 90◦)
σ 0
zz

� 1

(ω0τ)2

[
J0(γ0 tan θ)2 + 2

∞∑
ν=1

Jν(γ0 tan θ)2(1 + 3ν2 cos θ2 + · · ·)
]
. (31)

This can be simplified using the identities
∞∑

n=−∞
Jn(z)

2 = 1

∞∑
n=−∞

n2Jn(z)
2 = z2/2

(32)
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to give

ρzz(θ = 90◦)
ρ0
zz

� (ωc0τ)
2

1 + 3γ 2
0

. (33)

The resistivity is quadratic in the field as for the case of a linear dispersion, but the coefficient
is smaller. This is consistent with figure 1 which shows that the resistivity near 90◦ does
decrease with increasing γ0. This field dependence is quite different to what is observed in
the (TMTSF)2X materials. For (TMTSF)2ClO4 at 6.0 kbar [17] a linear field dependence
is observed at high fields. In (TMTSF)2PF6 at pressures from 6 to 10 kbar, the resistivity
saturates as the field increases [7, 18]. However, caution is in order because derivation of the
quadratic dependence involved assuming that tc tan θ 	 tb and so we only expect a quadratic
dependence slightly away from 90◦ or in the limit tc → 0.

4.4. The Fermi-liquid model for the temperature dependence

We now consider a specific model for the temperature dependence of the scattering time τ . In
a Fermi liquid the scattering rate, at temperatures much less than the Fermi temperature, has
a temperature dependence of the form [26, 32]

1

τ
= 1

τ0
+ βT 2 (34)

where the first term is due to impurity scattering and the second is due to electron–electron
scattering. Using this expression for τ in equation (25), we can now plot the temperature
dependence of the resistivity. This is shown in figure 3 for various values of ωc0τ0. The
resistivity is not a monotonic function of temperature but has a minimum when ωcτ(T ) ∼ 1.

0 10 20 30 40
T(K)

0

20

40

60

ρ zz
 / 

ρ0 zz
(T

=
0)

ω0τ0=20,θ=90
0

ω0τ0=20,θ=θ(ν=1)

ω0τ0=10,θ=θ(ν=1)

γ0=0.25

ω0τ0=0,θ=0
0ω0τ0=5,θ=θ(ν=1) b/c=1

Tmin

Tmax

Figure 3. The non-monotonic dependence of the interlayer resistivity, at the ν = 1 magic angle,
on temperature. A Fermi-liquid form for the temperature dependence of the scattering rate is
assumed. A value of τ0β = 0.025 K−2 is used in equation (34) so that the temperature dependence
of the zero-field resistivity roughly corresponds to that of typical samples of Bechgaard salts. At a
temperature Tmin defined by ω0τ(Tmin) � 1, there is a minimum in the resistivity. For sufficiently
high fields there is a temperature Tmax at which the resistivity is a maximum.
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If the field is sufficiently high, there is also a maximum. Using (34) we see that the minimum
occurs at a temperature

Tmin �
(
ωc0 sin θ

β

)1/2

. (35)

If T 2
max 
 1/(βτ0), then (27) implies

Tmax �
(
ωc0γ0 sin θ tan θ

2β

)1/2

. (36)

We are unaware of any measurements of the temperature dependence of the interlayer
magnetoresistance of (TMTSF)2ClO4 at the magic angles. Although the temperature
dependence at the ν = 1 magic angle shown in figure 3 is similar to that reported in ref-
erence [7] for the intralayer resistance of (TMTSF)2PF6 at 9 kbar, the observed temperature
dependence of the interlayer magnetoresistance is different [33]. It depends weakly on the
temperature from 15 K down to about 3 K and then decreases.

The temperature dependence shown in figure 3 is for θ = 90◦, i.e., the magnetic field is
aligned with the b-axis. The temperature dependence is qualitatively similar to that observed
for (TMTSF)2ClO4 at ambient pressure [34]. Again, qualitatively very different behaviour
was observed [7] for (TMTSF)2PF6 at 10 kbar. There it was found that the in-field resistance
had a temperature dependence similar to the zero-field resistance.

Zheleznyak and Yakovenko have given a heuristic argument as to the origin of the
maximum and minimum temperatures seen in the intralayer resistance in reference [7],
suggesting that metal–insulator and insulator–metal phase transitions occur as the temperature
passes through these values [26]. They argue that Tmin ≈ ωb ∼ B and Tmax ≈ tc which is
independent of the field. Above Tmin, the system is a two-dimensional metal. Below Tmin,
a magnetic field causes the electron motion in the b-direction to be quantized resulting in
a one-dimensional dispersion and correlations producing insulating behaviour. Below Tmax ,
the interlayer coupling becomes important and metallic behaviour is recovered. In contrast,
we find that Tmin and Tmax are given by (35) and (36), respectively, and both scale with√
B. Careful measurements should be able to distinguish between these two different field

dependences.

5. Conclusions

This paper only considers the interlayer resistivity ρzz, whereas magic angle effects are also
seen experimentally in the intralayer resistivity ρxx . Maki pointed out [19] that the semi-
classical theory will only give resonances in ρxx of order (tc/ta)2, whereas they are observed
to be much larger. A possible way around this problem is that experiments that are meant to
measure ρxx may actually be measuring some of ρzz. This is because in highly anisotropic
metals it is difficult to arrange the contacts and current path such that it lies completely within
the layers. This potential problem increases the motivation to make thin-film samples of
these metals.

It has been shown that within semi-classical transport theory, a non-linear dispersion
parallel to the chains is necessary to produce dips in the interlayer magnetoresistance at integer
magic angles. If the field direction is fixed at one of the magic angles, then one observes
both minima and maxima in the temperature dependence of the interlayer magnetoresistance.
This arises from the temperature dependence of the scattering rate. Since these maxima
and minima can exist within a Fermi-liquid model, one should be cautious about associating
them with non-Fermi-liquid behaviour or metal–insulator transitions. On the other hand,
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although the Fermi-liquid model considered here gives a good description of many of the
properties of (TMTSF)2PF6 at pressures from 6 to 8 kbar and of (TMTSF)2ClO4, it gives a
poor description of their properties when the field is parallel to the layers and of the intralayer
transport. Qualitatively very different behaviour is observed in (TMTSF)2PF6 at pressures of
about 10 kbar; explaining it remains a considerable theoretical challenge.
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